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The conditions for the existence of Riemann invariants of a one-dimensional system of equations of the non-linear theory of 
elasticity are investigated. Haantjes' diagonalization criterion is used to determine the form of the elastic potential for which 
the system has six Riemann invariants or three Riemann invariants (for waves which propagate in one direction). In particular, 
it is shown that the Haantjes criterion is satisfied and there are three Riemann invariants in the case of the elastic potential for 
slightly-non-linear wealdy-anisotropic elastic media [1-3]. A procedure for computing Riemann invariants is described. The 
Riemann invariants are computed approximately for a form of elastic potential which satisfies the Haantjes criterion. © 1999 
Elsevier Science Ltd. All rights reserved. 

1. We shall seek simple wave solutions of the system of one-dimensional equations of the theory of 
elasticity 

at, i a at, au i a . i  [oi a iw . i _ a i w ~  
at  - ar  au t '  a---t = ax , .  = a--t" - ax ) '  i =  1,2,3 (1.1) 

where w / are the components of the displa~ment vectors and • = O(u 1, u 2, u 3) is the elastic potential. 
For simple waves, the components u' and o' satisfy the equations 

au' c~=o"  au'+c =o (1.2) 
at + ax at 

where C = C(u 1, u 2, U 3) is the characteristic velocity. It follows from (1.1) and (1.2) that 

aui  a2°  (1.3) (c28ij - ~j).--~. = o, ~j = auiauJ 

Equation (1.3) has a non-trivial solution if IIC2~ij -~jll = 0. Hence L = C 2 are the eigenvalues of 
the matrix F = I IAjll; Oui/& are the components of the eigenvectors of this matrix. 

2. We will find a form of the elastic potential • = O(u 1, u 2, u 3 ) for which system (1.1) has six Riemann 
invariants. This means that the matrix 

(where O is the zero and I the identity 3 x 3-matrix) can be diagonalized and has only real e!genvalues. 
We will use Haantjes' diagonalization criterion [4, 5] in the following form [6]. Let ul(u) be the 

1 n components of the tensor (1, 1) on the manifold M with local coordinates (u . . . . .  u ). A Haantjes 
tensor is a trivalent tensor with components of the form 

HI. = .  - .  I - .  ; + ,vi , ; 

a. . a. t +,, a. : , a,, =,,:--- ,-- .  . . . .  

au" j au ~ au / u~ au i 
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where ~ are the components of a Nijenhuis tensor. The tensor u/i(u), all of whose eigenvalues are real 
and different, can be diagonalized in the neighbourhood of a point on the manifold if, and only if, its 
Haantjes tensor is zero. 

For the system of equations (1.2) u~(u) are the components of the matrix II II, the manifold M is 
the space region with coordinates u i, t9 i (i = 1, 2, 3). For any function cI) = O(u 1, u 2, u3), since the Nijenhuis 
tensor is antisymmetric the Haantjes conditions//:~ = 0 comprise 90 third-order equations and are 
complicated in form. They can be solved by symbolic calculation programs. We have not succeeded in 
finding a solution of general form and so we will consider only a narrow class of functions O. 

To simplify the formulae we shall write the superscripts in u', tg'(i = 1, 2, 3) as subscripts, since 
there are no tensor transformations below. 

Suppose the function • has the axisymmetric form ~ = G ( U l ,  u 2 + U2). Consider the component 
//622 of the Haantjes tensor for the matrix II fff II 

It follows from the condition/-/262 = 0 that 

• =G(u,, 4 +u2)= P(ui)+bo( d +ul), b o =const (2.1) 

where P(ul) is an arbitrary function. If the function • has the form (2.1), all the equations H k = 0 are 
satisfied. The eigenvalues of the matrix [[ fi~ II are obviously real. Hence, if the function ~ has the form 
(2.1), system (1.1) has six Riemann invariants. 

We now consider the case where O is the sum of arbitrary functions P(ul) and f(u2, u3). Then the 
equations H~ = 0 (i, j, k = 1 - 6) reduce to a system of two independent equations for the function 

I"/6 ---- f,33.f,223 --/23/233 --/22f,223 +/222f,23 ----" 0 (2.2) 

/'/263 --/22f,233 - f,23f.223 - /33 /233  "4" f,333/23 -- O (2.3) 

( f dj = a2 f / auiau.] , f,,ijk -" a3 f ] aUic:~14jaUk ) 

k , Iff.23 = 0, then all the equations H 0 = 0 are satisfied and the eigenvalues of the matrix I I f} I I are real 
i • • . ~J 

and different. We will consider the case f.23 # 0. Then, by adding Eq (2.2) and (2.3), we obtain a partial 
differential equation for f 

(hi(u3) + h2(uz))f.23 = 0 

where hi and h2 are arbitrary functions. Hence, h i ( u 3 )  = - h 2 ( u 2 )  = Co = const. The solution of system 
(2.2), (2.3) is the sum of arbitrary functions fl and f2 

j~ll2, U3) =/I(143 -- au2) +/2(U2 + aU3), a - l/a = --Co 

Thus, for system (I.I) to have six Riemann invariants, the function ~ must have the form 

= P(Ul) +j~(u3 - au2) +/2(u2 + au3) 

If we make a linear transformation of the variables u2 and u3, in the new variables • is the sum of 
three arbitrary functions 

= P(ul ) + A (u2) + f2 (u3) (2.4) 
k Hence, assuming that a function of one variable in ~ can be separated, the equations H,~ = 0 imply 

that system (1.1) has six Riemann invariants if the other two variables in cI) can also be separated (possibly 
after a linear transformation of variables), that is, • has the form (2.4). It can be shown in this case 
that all the eigenvalues of the matrix II D7 II are real and different. 

3. We will now find a potential • for which, for simple waves, system (1.1) has three Riemann 
invariants. In that case the matrix of that system F (cf. (1.3)) is symmetric and so has three real 
eigenvalues 7"0), L(2), ~'(3). Assuming them to be different, we apply the Haantjes criterion. The only 
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rd3 Lr2 u 3  1 2 non-zero components of the Haantjes tensor H~ (i,j, k = 1, 2, 3) a n d ,  12, 11 13, 11 21, H23, H~I,  H12 • The 
condition that the variable components are equal to zero reduces to one equation for the function O. 
If • has the axisymmetric form: • = G(ul, u 2 + u2), this condition is always satisfied and system (1.3) 
has three Riemann invariants. 

We will consider the case when there is weak anisotropy in the u2, u3 plane, that is, the function 
has the form 

~=G(ut,~ +u~)+ go(u~ -,~), go =const  

where go is the anisotropy parameter. We write the equation H32 = 0 (the fact that the other non-zero 
component of the Haantjes tensor are zero leads to the same equation) 

nl2 = A(=, ,  u2,.3)go + =3)So 2 + =2, "3)go 3 = 0 

The functions A, B and C are independent of g0, and it follows from the last equation that if 

A(ui, u2, u3) : O, a(ut, Us, u3) = O, C(ul, u2, u3) = 0 (3.1) 

the Haantjes criterion is satisfied. The expression for the functions A, B and C have the form 

A(ut, u2, u3) = ~1~ul, u2, u3) 

B(ul,u2,u3) = "~(q (3.2) 

C(ul, us, u3) =--64u2u¢,2 
~)2G a3G ~3G 

= n=  a3 . . , )s ,  = a=, s<4 . = ; )  

The form of the function ~0(ul, u2, u3) is too complicated to give here. 
It follows from expressions (3.2) that if ~1 = 0, then F_x]s (3.1) are valid and the Haantjes diagonalization 

condition is satisfied. Hence, the function ~ for the elastic potential has the form 

where P and Q are arbitrary functions. 
If ~2 = 0, 11 = 0, we have 

A(ul,ua,u3)#O, B(ul,u2,u3)=O, C(ul,u~,u3)=0 

and the elastic potential function can be written in the form 

• =/to( ~ + u~) 2 + N(ul)(u ~ + u~)+ M(ul)+ go(U~ -u~) (3.3) 

whereAo is an arbitrary constant, M(Ul) and N(ul) are functions which can be determined by substituting 
1 2 3 3 the second derivatives of the function * = O(u ,  u ,  u ) of the form (3.3) into the equation/at12 = 0. 

As a result we obtain a polynomial in the variables u2 and u3. From the fact that the coefficients of 
powers of the variables u2 and u3 are equal to zero, we obtain two differential equations for the functions 
N(ut) and M(ul) 

N'go(.-64A ~ + 24AoN"- 2(N") 2 + N ' N ' )  = 0 (3.4) 

N'go(-16AoN - 6(N') 2 + 4NN" + 8AoM" - 2N"M" + N 'M ' )  = 0 (3.5) 

These equations have two obvious solutions: go = 0, that is * = G(ul, u 2 + u2), and N(uO = N 1  = 

const, which is the form of the elastic potential function given in [1-3]. 
I f N ( u 3 ,  const, we will solve the equation corresponding to the case where the expression in brackets 

in Eq. (3.4) vanishes. Using the replacement of variables N" = f(N'), N' = x ,  const (if N' = const, 
then A0 = 0) and introducing the variable x = In x, we write this equation in the form 

d f ldx  = x ( f ) l f ,  x(f)  = 2 f  2 -24Aof+64A~ (3.6) 

The solutions of Eq. (3.6) have the form 
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;q = 8,40, f2 = 4,40 (x(t) = o) 

X 2 X X 2 

• ~.4 =8'40 +'~r+ 2gIA0 +I~ (x(f) ~:0) 

k 0 - const 

The rootsfl,.f2, f3 correspond to three series of solutions of Eq. (3.4) 

N(ul) = 4Aou~ + blul + bo (3.7) 

N(ul) = 2AoU~ + blu, + bo (3.8) 

b I = c o n s t ,  b 0 = c o n s t  

N(Ul) = 2AO(Ul - k2) 2 - ko 2 In (Ul - k2) + k3, k3 = const (3.9) 

The constant k2 is associated only with the shift with respect to Ul and so hence forth we will assume 
that k2 = 0. 

Substituting expressions (3.7), (3.8) and (3.9) for the function N(ul) into Eq. (3.5), we obtain three 
differential equations for the function M(Ul), the solutions of which are the corresponding series of 
expressions for the functions M(ul) 

M(u,)= - l--~ AoU~ + c, u3t + c2u~ + ctut +Co (3.10) 

= 8-~(-8Aob0 + 3blC s +3BI 2) c 2 

c3 -- c o n s t ,  c l  = c o n s t ,  Co = const 

M(uO__aou4 bl 3 + 2u 2 +clus +Co 

c2 = c o n s t ,  c t = c o n s t ,  Co = c o n s t  ( 3 . 1 1 )  

4t 2 ulc2-k~u~ In ul I 4 _ 4Ao/~Ct)in u t + c3 (3.12) U(u0 = Sou - 2 icl + 

C l ---- COllSt, C 2 ----- c, onst, c 3 = const, ko = const 

The functions N(Ul) (3.7), (3.8), (3.9) and M(Ul) of (3.10), (3.11), (3.12) and expression (3.3) 
determine the specific form of the elastic potential ~ for which system (1.3) has three Riemann 
invariants. 

4. We will now consider the special case when the elastic potential function (I) has the form 

=u I +u2+u 3 (4.1) 

(we have putA0 = I in (3.3), b0 = 0,,bl = 0 in (3.8), and Co = 0, Cl = 0, c2 = 0 in (3.11)). 
In this case if go = 0 (~ = R ~) we define the eigenvalues of the matrix F as follows: X{I) = 12R 2, 

X(2, 3) = 4R2- The eigenvectors a(1), a(2), a(3) with components 

a(t) = (ul, u2, us), at2) = (--u3, 0, ut), ~3) = (--~, ut, 0) 

correspond to these eigenvalues, and the Riemann invariants of system (1.1) have the form 1(i) = Hi(R2),/(2) = 
H2(ul/u3),/(3) = H3(ul/u2), where Hi,/-/2,/-/3 are arbitrary functions. 

If go * 0, the eigenvalues X0), X(2), XO) of the matrix F are found from the equation 

2 2 2 22 2 2 
"°a + 8°2(u l + u2 + u3) - 32U #o + 4°go(4U z - 4u3 + g°) ~ O 

~.=O+4(u~ 2 2 
+ U 2 + u  ~) 
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To each eigenvalue k(i) there corresponds an eigenvector whose components xl, x2,x3 are given by the formulae 

xl = utlu2- 2utgol(Ou.z). x2 = 1 

x3 = o l(Su2u3 ) - " 21 I( u2u3 ) - u2 l u3 -go 1( 4u2u3 ) + 2ull go I(°u2u3) (4.2) 

If g0 is small but non-zero, the eigenvalues have the form 

~1)= 12R 2 + 2(u~-u~ )gol~ 
~2..:3) -- 4R2 +/)go (4.3) 

We will find the Riemann invariants of system (1.1) in the case when • has the form (4.3) andg0 is small. The 
hyperbolic system (1.1), allowing for Eqs (1.2), can be written in the form 

~)u. i)u 
C(,).~t + fo.~x =O, J~j = ~ ,  k = 1,2,3 (4.4) 

where C(k) = C(k)(ul, u2, u3) is the characteristic velocity and the subscript in brackets denotes the characteristic 
velocity corresponding to the eigenvahie with the same subscript. Henceforth, any value for which there is a subscript 
in brackets corresponds to the eigenvalue with the same subscript. 

We multiply the equations of system (4.4) on the left by the eigenveetor a(k) = (al(k), a2(k), a3(k)) of the matrix F 
(the subscript without brackets denotes the number of the eigenvector component). We obtain 

a,(,)C(.) ~ t  + ~'(,)aj(k) ~ x  = O 

where summation is carried out over repeated subscripts without brackets and Z.(k) = (C(k)) 2 is an eigenvalue of 
the matrix F. If an integration coefficient ~t(k) is found for each eigenvalue such that 

at(k) 
Pfk)a~(tO = c3ui (4.5) 

then system (4.4) can be written in the form 

8l(k) ~ , -  8l(k) = n 
8t ~''Ck) ~ " 

Eliminating P(k) from Eqs (4.5) we obtain a system of two partial differential equations for determining the 
Riemann invariants Ilk) 

~1<k) = a~tk) a1(~) ~I<~) = a~k~ alCk) k = 1,2,3 (4.6) 
C3Ul a2(k) aw2' o3u 3 a2(k) i~u 2 ' 

System (4.6) for the first Riemann invariant I0), taking into account expressions (4.2) and (4.3) for the components 
of the eigenvector a0) = (al0), a20), a30)), can be written as follows: 

alo, f ' a1,,  , f  i _ 
z° ) j ~u--'~-3 "r [ 2-'~'R ~0 (4.7) 

We will seek a solution of system (4.7) in the approximate form 

!(I) = HI (R) +g0T(i) + O(g0 2) (4.8) 

where Hi(R) is the first Riemann invariant when go = 0. From (4.7) we obtain a system of equations for TO), the 
solution of which is 

T(I ) = O, (R) + (u~ - u~ ) 81 3 aHlaR(R) (4.9) 

where ~(~) is an arbitrary function. 



632 A.P. Chugainova 

Hence, we have found the first Riemann invariant (expressions (4.8) and (4.9)) of system (1.1) in the case where 
has the form (4.1) andg0 is small but non-zero. 
Became the expressions for the components of eigenvectors a(2) and a(3 ) (4.2) are. so. complicated, I(2 ) and I(3) 

were found by representing the components of vectors a(2) and a(3) in the form of series m ul. System (4.6) for I(2) 
then has the form 

a1(2)=_ 2.1. 7 aim a1(2> ( 2.+.p )ai(2) _i1"2+ 

a., . + - 4  am' am t, m m(.+-4)) am 
We will seek a solution of system (4.10) in the form 

2 
1(2) =/ '(2) + u 15(2), T(2) = T(2)(m, .3), $(2) = $(2)(m, "3) 

From the second equation of (4.10) we then obtain 

(4.10) 

where 0(2) is an arbitrary function. 
The first equation of (4.10) gives 

(4.11) 

7"(2 ) = d~2(u2/.3) (4.1 2) 

S(2) = -u2a'i ("2 / u3)/["3 ( ~  - ~ ) ]  (4.13) 

Thus, expressions (4.1)-(4.13) give the value of the second Riemann invariant, apart from linear terms in go and 
quadratic terms in Ul. 

For the third Riemann invariant, taking into account the expressions for the components of the eigenvector a(3) 
(4.2) for small ul, we can write (4.6) as follows: 

2 2 + ]a1,3, 
a,,, ,,,m . 2 ( 4 - 4 ) !  

(4.14) 

al(3) alo) _ _ m  
- (  .3 - a, .3  m ( , , l - 4 ) )  am 

We will seek a solution of system (4.14) in the form 

1(3) ffi T(3)(I + u 2S(3) + -.,), 7"(3) -" T(3)(Ul, u2, "3), $(3) = $(3Xm, u3) (4.15) 

Then from (4.14) in the highest approximation we obtain a system of equations for T(3), which we solve to give 

7"(3 ) ffi u 12m(~- , b  "m, m -is an integer (4.16) 

Substituting expressions (4.15) and (4.16) into the first equation of (4.14), we find the correction S(3) 

2 2 -2 S(3) =-2mu3(vo-u2 2) + C,(u]-u273 -1 (4.17) 

where C1 is an arbitrary constant. Expressions (4.15)-(4.17) give an approximate value for the third Riemann 
invariant 1(3). 

I wish to thank A. G. Kulikovskii and G. A. Alekseyev for their interest  and for discussing the results. 
This  research was suppor ted  financially by the Russian Foundat ion  for Basic Research (96-01-00991). 

R E F E R E N C E S  

1. KULIKOVSKII, A. G. and SVESHNIKOVA, Ye. I., The self-similar problem of the effect of a sudden load on the boundary 
of an elastic half-space. Pt/k/. Mat. Mekh., 1985, 49, 284-291. 

2. KULIKOVSKII, A. G., Equations which describe the distribution of non-linear quasi-transverse waves in a slightly non-isotropic 
elastic solid. Pr/k/. Mat. Mekh., 1986, 50, 597-604. 

3. CHUGAINOVA, A. E, On forming a self-similar solution in the problem of non-linear waves in an elastic half-space. Pr/k/. 
Mat+ Mekh., 1988, 52, 4, 62-697. 

4. HAANTJES, J., On Xm-forming sets of eigenvectors, lndagationes Math., 1955, 17, 158--162. 
5. NIJENHUiS, A., X,n-forming sets of eigenvectors, lndagationes Math., 1951, 13, 2.00-212. 
6. MOKHOV, O. I., Simplectic and Poisson structures in spaces of loops of smooth manifolds and integrable systems. Doctoral 

dissertation, Moscow, 1996. 
Translated by R.L. 


